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Abstract

Macroeconomic theories of growth and wealth distribution have an outsized
influence on national and international social and economic policies. Yet, due to a
relative lack of reliable, system wide data, many such theories remain, at best,
unvalidated and, at worst, misleading. In this paper, we introduce a novel
economic observatory and framework enabling high resolution comparisons and
assessments of the distributional impact of economic development through the
remote sensing of planet earth’s surface. Striking visual and empirical validation
is observed for a broad, global macroeconomic σ-convergence in the period
immediately following the end of the Cold War. What is more, we observe strong
empirical evidence that the mechanisms driving σ-convergence failed immediately
after the financial crisis and the start of the Great Recession. Nevertheless,
analysis of both cross-country and cross-state samples indicates that, globally,
disproportionately high growth levels and excessively high decay levels have
become rarer over time. We also see that urban areas, especially concentrated
within short distances of major capital cities were more likely than rural or
suburban areas to see relatively high growth in the aftermath of the financial
crisis. Observed changes in growth polarity can be attributed plausibly to
post-crisis government intervention and subsidy policies introduced around the
world. Overall, the data and techniques we present here make economic evidence
for the rise of China, the decline of U.S. manufacturing, the euro crisis, the Arab
Spring, and various, recent, Middle East conflicts visually evident for the first
time.

Keywords: remote sensing; measurement; macroeconomics; sigma convergence;
great recession; big data

1 Introduction
The rise of more creative and powerful simulation, modeling, and computation along

with a superlinear expansion in both the variety and size of data is transforming

science, [1, 2]. From high energy physics to cosmology, biology, and genetics, sophis-

ticated instrumentation, massive, high throughput experiments and observatories

are increasingly leveraged by scientists and scholars to empirically validate deep,

longstanding theories. [3–5].

Nevertheless, in many fields, it is still too often the case that deep theory remains

untested due to the relative dearth of available, system wide data that would be

necessary and sufficient for validation. Data of the commensurate size and shape

needed to validate a big theory is often either merely unattainable, too expensive to

derive, too elusive to observe, and, for some theories, it may simply be unclear what

would so much as count as appropriate data in the first place. Where the requisite
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data needed to validate a given theory or even observe a theorized phenomenon is

lacking, researchers often turn to various methods of indirect detection. An obvi-

ous example here is the search for empirical validation of the existence of weakly

interacting massive particles [6, 7].

Perhaps not as obviously, many macroeconomic theories, the validity of which

carry huge practical, political, and social ramifications, also rely on indirect detec-

tion for validation. Data for inferring the state or dynamics of many subnational,

national, and global economy-wide phenomena (e.g., employment, income, produc-

tion, migration, etc.) are gathered through national income and product accounts

surveys. Moreover, given that these data are collected almost exclusively through

surveying, they are often very small and of uncertain quality relative to the broad

importance of the object of study. For instance, in the United States, data on na-

tional unemployment is gathered monthly by the Bureau of Labor and Statistics

by surveying roughly 0.02% of U.S. households. These data are then modified with

additional data weighting and statistical adjustments to enhance their stability over

time [8]. As a result, these data and the dynamics that are subsequently inferred

from them are often unreliable. To give an example, [9] demonstrated that much of

the observed decrease in US interstate migration was, in fact, a statistical artifact

attributable to the Census Bureau’s introduction of a seemingly minor change to

its procedures for imputing missing data.

Additionally, many nations either lack the necessary organizational or administra-

tive infrastructure to construct accurate and reliable, if nevertheless basic, national

accounts or they seek to frustrate the transparency of accounts data for political

reasons or economic gain as noted in [10, 11]. As a result, many theories that are

central to macroeconomics often have an outsized influence on policy even when

empirical validation of those theories is missing or, worse, misleading. Extensive

discussion of related issues in [12–14] stresses the importance of rigorous model

verification using a wide variety of methods.

While it is not at all clear what the direct observation of, for instance, gross

domestic product (GDP), would be, it has been demonstrated that reliable proxies

other than variables in national accounts data can been derived through the passive

remote sensing of the earth’s surface from space. In particular, nighttime luminosity

data has been shown convincingly to be a useful and reliable proxy for socioeconomic

statistics [15–20]. For instance, the strong correlation between aggregate real GDP

growth and aggregate changes in luminosity levels was found in [17] to be highly

significant for the period 1992-2008. What is more, [20] found that variations in

GDP explain roughly 75 percent of observed variation in the aggregate nighttime

light emissions.

Crucially, recent work has shown robust correlations between the relative intensity

of spatially disaggregated nighttime luminosity and GDP at both national and sub-

national resolutions. Moreover, this work has demonstrated that using nighttime

luminosity does particularly well at resolving national and subnational GDP in

countries that otherwise lack the administrative statistical infrastructure necessary

to derive high-quality national accounts data [21]. Nevertheless, by merely observ-

ing statistical correlations between terrestrial light spillage and GDP, the extant

literature on leveraging nighttime luminosity data for economic analysis has done

little to inform or validate theory about global growth and production dynamics.
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In this paper, we argue and demonstrate that passive remote sensing of the earth’s

surface can be leveraged to do more than merely proxy static accounting. Remote

sensing can be used to add robustness to and support the empirical validation of

economic theories. As stated above, the macroeconomic tradition for the observa-

tion and measurement of phenomena that are predicted by theory has been the

employment of surveying and accounting to gather data to which a model can be

fit. Apart from precise geographic and temporal resolution, the obvious benefits of

these means of data acquisition are the uniform units of measure which are cen-

tral to the internal structure of a given macroeconomic theory. However, to say

nothing of the severe and highly problematic limitations introduced by sample size,

the obvious drawbacks surround precision and accuracy of the measured units so

that efforts to improve models and, therefore, theory require, at bottom, efforts to

improve the institutional infrastructure needed for such measurement. At a deeper

level, and for the purposes of validation, the constraint placed on the primary mod-

els of these theories by their parameterization and the near axiomatic requirement of

specific units (e.g., currency values) of measure in those parameters will ceaselessly

frustrate attempts to resolve inconsistencies between theoretical assumptions and

observed data. This may seem trivially obvious, but resolving such inconsistencies

without substantial modifications to either method or theory (or both) is anything

but. These problems are further compounded when the phenomena predicted by

theory are, seemingly, only observable by such indirect means.

In what follows, we introduce a novel method with its own, independent set of

micro-state assumptions and conditions to detect, sense, or ‘observe’ the theorized

macroeconomic phenomena known as ‘economic convergence’ and ‘divergence’. In

particular, we use the highly calibrated, high resolution (pixel-level) heterogeneous

magnitude of changes in detectable light spillage over time as a salient proxy for

the dynamism of human economic activity. Given that, theories of economic conver-

gence and divergence are, at bottom, concerned with relative changes in economic

activity over time, our approach can serve to supply robustness to these theories

since the derivation, identification, and measurement of these phenomena can be

achieved with novel parameters that are completely independent from those used

in all adjacent models. Moreover, in [22] it was strongly argued that the real test of

economic convergence is a consistent diminution of variance, not among the means

of aggregate variables, but among individual enterprises and households, there by,

rather indirectly, arguing against the plausibility of observing convergence dynamics

in models of aggregate national accounts data.

The remainder of this paper is organized as follows: Section 2 describes our data

and method (our Celestial Observatory), Section 3 presents our results, and Section

4 serves as a summary and discussion.

2 Setup: data and methods
There are several flavors of the macroeconomic theory of convergence. In this paper,

we are concerned mainly with so called ‘σ-convergence’ predicting a decrease in the

dispersion of income/growth across countries as opposed to the somewhat weaker

‘β-convergence’ which holds that the economies of poorer countries will grow more

rapidly than those of richer ones. In [23] it was shown that β-convergence is a neces-

sary but not sufficient condition for σ-convergence. There are a number of proposed
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and plausible explanations for why this dynamic should occur. For instance, in a

globalized economy, relatively rich nations will experience faster rates of diminish-

ing returns on freely traded means of production, technologies, and innovations,

than poorer countries. As a result, poorer countries will realize faster relative rates

of growth than rich countries. In fact, the literature is littered with interpretations

of what even counts as growth characteristics for nations [24–29]. These dynamics

are understood to act on very long timescales. For that reason, it is important that

growth studies that aim to investigate convergence dynamics work with panel data

at the longest timescales available.

Sampling issues notoriously frustrate attempts to observe convergence. For in-

stance, [29] observed that the estimated speeds of β-convergence are so surpris-

ingly similar across data sets, that economists can use a simple rule: economies

will converge at a speed of two percent per year. And in [23] it is was argued that

σ-convergence did not occur across the United States, or within a majority of the

individual U.S. states, from 1970 to 1998. Up to a point, our work, below, seems

to affirm the former. However, in the wake of the economic crisis and in the data

after 2008, we also observe strong divergence dynamics. So, in certain contexts, at

certain statistical moments, and under certain decompositions of the theory itself,

our work lends credibility to both. That is, depending on where, when, and how

(with what instrument) one looks, one can obverse strong convergence or strong di-

vergence dynamics. Ultimately, we believe that this supports the need for a gentle

reassessment of the criteria, data, and instruments employed and deployed. While

proposed explanations for why the existence of such theorized dynamics should oc-

cur may be intellectually or politically satisfying, from the perspective of economic

theory, they ultimately do more to direct attention toward data and model selection

rather than to establish the validity of the theory itself. We argue that the follow-

ing discussion contributes a novel model of an additional, independent data set that

provides evidence for the existence of convergence and divergence dynamics.

To generate an independent model for observing convergence and divergence dy-

namics, we turned to the version 4 DMSP-OLS Nighttime Lights Time Series col-

lected by the US Air Force Weather Agency [30, 31]. The cloud-free, stable lights

composites were processed using the entirety of the available archive data for the

1992 - 2013 period. This is a 21 year dataset that represents one of the longest

panels available for growth studies. The analyzed products are 30 arc second grids,

spanning -180 to 180 degrees longitude and -65 to 75 degrees latitude whereby the

resulting data arrays include ≈ 730MM observed pixels with ≈ 20MM non-zero

(or active) pixels per year. We note that, while the radiance-calibrated NTL im-

ages provide better dynamic resolution, these images are only available at random

points in time while, for this study, we seek to concentrate on consistent metrics of

economic activity over the whole 1992 - 2013 time period.

Previous work [15] has established that the version 4 DMSP-OLS Nighttime Lights

Time Series dataset has some substantive benefits in estimating quantifiable eco-

nomic activity. Nevertheless, like most of the standard, national accounting ap-

proaches mentioned above, the use of nighttime lights has limitations. The most

practical limitation is introduced by the impossibility of establishing a precise map-

ping from the rate and intensity of nighttime light leakage to the World Bank’s
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standard metrics (e.g. USD) for GDP. Additionally, the annual composites across

years that are recorded by distinct satellites cannot be compared directly with each

other due to differences in on-board calibration. Finally, the annual variability of

cloud dynamics also affects the statistical reliability and estimate precision, partic-

ularly in areas for which there are fewer observations as noted in [32, 33].

We began our study by replicating much of the prior literature’s work. The extant

literature is uniformly committed to analyzing aggregate light intensities. In repli-

cating this literature, we immediately observe that the correlation between changes

in aggregate light intensity and world economic growth is merely 0.31 for the pe-

riod of 1993-2013, which is in line with findings in [17]. Next, we used a similar

technique to separately estimate both country-specific and state-specific aggregate

growth metrics for the periods of 1993 - 2006 and 2007 - 2013 with year fixed effects

controlling for differences in sensor settings across satellites, as well as taking out

the effects of changes in worldwide economic conditions as in [17]. These results are

reported in Table 1-2 for cross-sections of countries and individual U.S. states with

average annual growth rates ŷ93−06 for 1993 - 2006 period and ŷ07−13 for the 2007

- 2013 period. Using a basic, generalized least-squares procedure, we also estimated

the standard deviations of growth across years in σ(y93−06), σ(y07−13). From these,

it is obvious that, depending strongly on the particular subsample of countries or

years included in studies, the point estimates of growth using prior, extant methods

based on night lights can be plausible but misleading and results can be spuri-

ous. Nevertheless, and quite surprisingly, aggregate growth metrics have been used

exclusively in all previous studies incorporating night lights.

To address these issues while simultaneously keeping the data array of observa-

tions as intact and free of adjustments as possible, we apply a differencing technique

with zero mean (demeaned) difference centering. In what follows, we describe this

method in detail and demonstrate the veracity of this approach. While we cannot

completely rid our data of spurious local and global variability due to various mea-

surement factors, this method is appealing both for its simplicity and for its clear

empirical findings. Subsequent improvement is certainly possible by, for example,

combining and aligning with independent data sets on cloud formation and behav-

ioral dynamics with the possibility of near real-time monitoring of object conditions.

For our study, intensities for nighttime lights are represented by the time-indexed

array Xt(i, j), where t = 1992, . . . , 2013 and each element contains the intensity

of light detected for a pixel with a given longitude lon(i) and latitude lat(j). We

perform the following differencing for all pixels to obtain:

∆Xt(i, j) = Xt(i, j)−Xt−1(i, j),∀t ∈ (1993, 2013)

At each time step, we then center the differences in pixel light intensity by sub-

tracting the globally (or country, or state-specific) averaged value of differences

between years.

∆X ′t(i, j) ∗ 1(∆Xt(i, j) 6= 0) =

∆Xt(i, j) ∗ 1(∆Xt(i, j) 6= 0)−

∫ lon

lon

∫ lat

lat
∆Xt(u, v)dudv∫ lon

lon

∫ lat

lat
1(∆Xt(u, v) 6= 0)dudv

,
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where 1(∆Xt(i, j) 6= 0) is an indicator function that is zero for all pixels with no

change in intensity and one for all pixels that display a change in intensity.

Thus, we filter away both pixels that do not have any signal and pixels that do

not show any difference when demeaned between annual time steps. What is more,

this also helps us to avoid a known issue with saturation of light intensity due to

detector sensitivity. Static, saturated areas (e.g. urban centers) are automatically

filtered with a resultant time series providing a dynamic characterization of detected

changes. Obviously, it is plausible that meaningful changes in economic activity in

these saturated areas are not detected due to filtering and, therefore, remain hidden.

Nevertheless, and perhaps surprisingly, we still observe detectable changes in highly

urban and well-developed areas with highly variable light spillage contributing to the

detection of economic activity patterns that could be further correlated with other

known and observed data on social and economic events. For instance, as small

capillaries wend fluctuations toward and away form great estuaries in our data,

streams of traffic of higher of lower intensity can be, perhaps, detected spilling in

and out of urban central districts on their evening commutes, carrying out freight

delivery, or migrating.

Finally, we process our demeaned time series using a simple standard three-state

Markov-chain growth model. We use a finite set S = {−, 0,+} of three possible

states: a negative change that is larger than the cross-sectional σt for year t, a

positive change that is larger than the cross-sectional σt, and a neutral (no change)

state that is within σt.

To understand the characteristics of changes in luminal intensity over time, we

compute the transition probabilities Pt(i|j), i, j ∈ S for a state j at time t − 1 to

become state i at time t as stochastic the matrix:

Pt(+|+);Pt(+|0);Pt(+|−);
∑
i

Pt(+|i) = 1;

Pt(0|+);Pt(0|0);Pt(0|−);
∑
i

Pt(0|i) = 1;

Pt(−|+);Pt(−|0);Pt(−|−);
∑
i

Pt(−|i) = 1;

Next, for each stochastic matrix Pt at time t we find the asymptotic stationary

matrix:

lim
n→∞

Pn
t = P t

and take the diagonal elements of this matrix as a++
t , a00t , a−−t , corresponding to

‘persistent high growth’, ‘persistent neutral growth’, and ‘persistent high decay’,

used in subsequent discussion. The benefit of using stationary probabilities condi-

tioned on the state of world at time t is that it allows us to abstract away the

transitory effects of stochastic shocks, to reveal how permanent effects from shocks

like, for instance, financial crises, shift the world into different trajectories of devel-

opment. This allows us to test whether variance in the cross-sectional distribution

of economically active pixels increase over time. We find that the gap a++
t − a−−t
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Figure 1 Probability distributions of observed cumulative zero-mean annual change variations in
1993-2013 period against normal distribution (left) and quantile-quantile-plots across different
years (right)

between the probabilities of persistent, high growth and persistent, high decay pro-

vides a good metric for particularly negative (if the gap is negative) or positive

shocks that perturb countries on their path to convergence. Obtaining those met-

rics allows the direct tracking of both the ‘majority club’ (as in [23]) of locations

that ‘converge’ under specific σ bounds and the ‘minority club’ that grow or decay

more rapidly and sit about the long tails of the distribution.

3 Results and discussion
In what follows, we present a number of observations that demonstrate global,

national, and subnational convergence and divergence in intensities of terrestrial,

nighttime luminosity. We argue that these deltas represent distributional impacts

of economic activity and, when these distributional impacts conform to phenomena

predicted by broad σ-convergence/-divergence, we further claim that these obser-

vations add robustness to that theory.

Fig. 1(left panel) shows a histogram for the demeaned difference distribution

representing cumulative change over the 1993 - 2013 period. Our observed change

distribution for nighttime light spillage is leptokurtic (excess kurtosis is 8.5) and

skewed to the right (where skewness is 0.5 with a standard deviation of 3.68%). [23]

studied the U.S. per capita income distribution from 1970 to 1998 and found that

excess kurtosis increased from 0.4 to 7.3. This is, indeed, in line with and supported

by our findings for night light distribution.

Fig. 1(right panel) confirms that samples from different years come from a similar

distribution (e.g., AF satellites are looking at the same planet and distribution is

stable over time). However, there are important differences across years. For ex-

ample, pixels in the Middle East that were previously growing in relative intensity

suddenly shift into a depressed slide as the region slips into a series of well docu-

mented wars and episodes of tremendous civil unrest.

Fig. 2(left panel) shows cumulative change in 1992-2002 (Y axis) vs 2003-2006 (X

axis) with color coded pixels based on total intensity growth in 1992-2006 subsam-

ple. Fig. 2(right panel) shows cumulative change in 2008-2013 (Y axis) vs 1992-2007

(X axis) with color coded pixels based on total intensity growth in 1992-2013 sam-

ple. A 45-degree (positive sloped) line corresponds to autocorrelation of growth and,
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Figure 2 Distribution change, effect of Great Recession shock. (Left) 2003-2006 (Y -axis) vs
1992-2002 (X-axis),(Right) 2008-2013 (Y -axis) vs 1992-2007 (X-axis). Total growth over
2013-1992 period is color coded.

therefore, an increase in divergence of growth over time as faster growing pixels per-

sistently outperform slower ones. We see that post-2007 growth shows a noticeable

divergence along the systemically high-growth area of the spectrum. However, over-

all, most points are clustered in either anti-correlated or not correlated quadrants

thereby providing support for the idea that general convergence mechanisms are in

effect.

[34] found that energy consumption inequality decreased from 0.66 in 1980 to

0.55 in 2010. This finding is in line with the satellite observed production and use

of light at night which also indicates similar decreases in inequality after the Cold

War and in the run up to the financial crisis of 2008. Unfortunately, comprehensive,

post-crisis economic indicators are still lagging and largely unavailable.

We also compute the cumulative cross-sectional standard deviation of our vec-

torized data array:

σt = σ(∆X ′t(i, j)),∀t ∈ (1993, 2013)

.

This approach takes the statistically unreliable, absolute aggregate levels of

growth completely out of the picture and centers the focus on the distributional

impacts of growth. As a result, σ-convergence in our framework still captures un-

conditional estimates of local, high-resolution deviations as in [22] while avoiding

statistical fallacies required for testing across samples that are grouped by means

in a specific year.

Fig. 3 shows global cross-sectional change variability before and after the Great

Recession event. We see again, that there is support for a theory of global σ-

convergence kicking in immediately after the end of the Cold War period and before

the Great Recession. However, the global cross-sectional provides strong empirical

evidence for economic divergence in the years immediately following the economy-

wide shocks delivered by the financial crisis with long and persistent recovery dy-

namics.

To aid in understanding the sources of these dynamics, we report in Table 1-2

the calculated values for the transition probabilities a++, a−−, a00 in our 3-state

Markov model. Here we see that both persistent high growth and persistent high de-

cay rates shrank over time, with some prominent exceptions (e.g., Syria). In general,
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Figure 3 Standard deviation of annual zero-centered change, (Left) annual global, (σg),
percent, (Right) across countries, (∆) percent

moreover, the gap between high growth and high decay became larger indicating

that the mechanisms driving σ-convergence failed immediately after the financial

crisis. This observation highlights another strength of our approach. Namely, it pro-

vides indicators for the direction of research attention and aids in the development

of hypotheses. For instance, perhaps the observed breakdown in σ-convergence dy-

namics can be attributed to intentional suppression of extreme volatility through

post-crisis monetary policies. Such policies may be directly implicated in decreas-

ing the probability of failure to a large degree while also decreasing slightly the

probability of higher success.

Figure 4 Markov transition probabilities across selected countries, red markers are for a++

values, blue markers are for a−− values, solid blue and red lines are mean values over 1993-1006
and 2007-2013 periods, percent
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Figure 5 Markov transition probabilities across selected US states, red markers are for a++

values, blue markers are for a−− values, solid blue and red lines are mean values over 1993-1006
and 2007-2013 periods, percent

Figures 4-5 show the annual Markov transition probabilities for a selected subset

of countries and U.S. states. Red and blue dots represent the observed transition

probabilities for high growth areas to high growth areas and high decay areas to

high decay areas respectively. The solid red and blue lines represent the mean prob-

abilities for a given time period with a break at the end of the 1993 - 2006 subsample

and the start of the sample for 2007 - 2013. The mean observations tell a fairly con-

sistent story and confirm that there is broad heterogeneity in the observed variation

in growth and decay probability outcomes across nations after the global financial

crisis. The individual observations also tell a series of interesting stories. For exam-

ple, Switzerland appears to have been particularly sensitive to the financial crises

that occurred in the observed period, including the Asian crisis (1997) and Euro

zone crisis (2009 - 2011). Looking at the United States, we observe that the high

growth probabilities and high decay probabilities moved in, more or less, lockstep

through most of the 1993 - 2006 period but that, after the financial crisis, a gap

opened up whereby the high growth probabilities climbed slightly while the high de-

cay probabilities look rather unchanged. One could reasonably hypothesize that this

uptick in growth-growth probability is due to massive stimulus programs enacted

in direct response to the broad financial meltdown.

Apart from interrogating the calculated transition probabilities, much can be

learned simply by looking at individual pixel-level data. So, in order to facilitate

merely looking, we produced maps of the global distributional impacts with color-

coded values of ∆X(i, j) =
∑t=2013

t=1993 ∆X ′t(i, j).
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Figure 6 Annual average global mean-centered change, 1993-2013. Blue-coded areas
correspond to net negative dynamics (decay) and red-colored areas to net positive dynamics
(growth). Neutral changes are not distinguishable from the black background. Extreme outliers for
negative and positive change are marked with cyan and orange correspondingly

Fig. 6 shows the total, globally mean-centered change over a period of 22 years

spanning 1992-2013. Blue-coded areas correspond to net negative dynamics (decay)

and red-colored areas to net positive dynamics (growth). Neutral changes are not

distinguishable from the black background. It is important stress that coded devi-

ations represent movements away from the global zero-mean centered panel time

series. This means that relative decline (blue-colored areas) or relative growth (red-

colored areas) do not necessarily translate to absolute decline of economic activity

in a given area. This is, of course, consistent with broad mechanics of σ-convergence.

Looking closely, the major economic transformations following the end of Cold

War are clearly visible with, for example, the net positive rise of China and the

decline of US industry, capital transfers within the European Union with net ben-

eficiaries in Eastern Europe and Scandinavia, growth in India and China alongside

the relative decline in Pakistan and Syria. The development of shale oil drilling

along side conventional oil extraction techniques represent important factors in

economic production and development and their impact can be clearly observed in

the northern United States and Russia.

To demonstrate the resolution of our observatory, we also conduct distributional

impact studies with σ-convergence tests within particular countries and states of

the United States across our full panel data time series. For these studies, we zero-

mean centered our time series data for each, particular, country or state as a whole

for country/state-specific fixed effects.

Fig. 7 represents a decomposition of the total mean-centered change into annual

averages for the period of 1993 - 2006 (left panel) as compared to 2007 - 2013

(right panel) for Germany. There is a distinct, observable contrast between relatively

larger growth in central and Eastern Germany before the global financial crisis and

a shift in growth toward historically more developed centers in the western regions

following the crisis.

Fig. 8(left panel, right panel) represents the same period decompositions for Thai-

land, one of the more successful developing nations with notably sustained high
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Figure 7 Annual average mean-centered change, Germany. (Left) 1993-2006 period,(Right)
2007-2013 period

levels of growth. Interestingly, there is an obvious and quite sharp contrast between

an observably equatable or diffuse growth distribution before the crisis and a post

crisis concentration of growth toward and around central Bangkok.

Fig. 9(left, right) represents the same period decomposition for the state of Mary-

land (U.S.A.) that surrounds the nation’s capital, Washington, D.C.. The magnitude

of observable urban renewal is striking. We also note a similar phenomenon for the

city of Chicago, as well as other major metropolitan areas in the U.S. and around

the world. There are, nevertheless, equally striking exceptions.

Fig. 10(left panel, right panel)-Fig. 11(top panel, bottom panel) represents Syria

and Turkey. The change in growth polarity for the once prosperous province of

Aleppo, since captured by insurgents, as well as new areas of growth away from

the central government are clearly visible and highlight a possible use of this ob-

servatory and method for humanitarian purposes. Namely, the early detection of

on-the-ground social crises.

Our approach directly exposes a substantial amount of policy relevant hetero-

geneity in economic development both inside and across countries. Moreover, this

heterogeneity is demonstrably impossible to observe using only mean-aggregated

data and serves to further emphasize the contributions our observatory and ap-

proach can make to theory. While the correlation between photons emitted as a

byproduct of economic transactions and economic development has been described

in the literature, technology improvements should, in theory, lead to increases in

terrestrial light spillage as a result of falling costs. For instance, in [27], the amount

of labor required to pay for a lumen-hour of light consumption was estimated over

time and shown to fall precipitously. However, technologies and energy conserva-

tion measures can introduce ambiguous observational effects and further frustrate

attempts to make sense of observations. On the one hand, conservation necessar-

ily leads to reductions in light spillage due to, for instance, improved efficiencies in

building lighting management (i.e. automatically turning off lights at night). On the

other hand, technologies can be implicated in increased luminal production due to
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Figure 8 Annual average mean-centered change, Thailand. (Left) 1993-2006 period,(Right)
2007-2013 period

more efficient energy-to-light conversion mediums (as, for example, switching from

incandescent lighting to LED) thereby driving down the cost (in both dollars and

carbon) of leaving the lights on. Of course, increasing urban population densities

are a factor. Yet, as we can see from Fig. 8-Fig. 9, there is a visible effect from the

growth of suburbia and general urban sprawl, suggesting that urban commute light

spillage does, at least partially, capture the effects of urban growth. Nevertheless,

applying proper spatial statistical methods to characterize dynamic processes to

support our general qualitative findings is by no means trivial due to substantial

spatial autocorrelations and on-board calibrations that bias observations.

4 Conclusion
Our mean-centered differencing procedure represents a significant improvement over

all prior approaches to using the intensity of nighttime lights as a means to estimat-

ing the characteristics of macroeconomic phenomena. Our method efficiently filters

away the effects of well documented (and replicated in this study) mean value biases

in remote sensing that are caused by ground or on-board sensor conditions. As a
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Figure 9 Annual average mean-centered change, Maryland. (Top) 1993-2006 period,(Bottom)
2007-2013 period

Figure 10 Annual average mean-centered change, Syria. (Left) 1993-2006 period,(Right)
2007-2013 period

result, our approach can provide reliable and interesting metrics across time and

space that qualitatively agree with evidence from other data sources. While it is

certainly possible to enhance the obtained metrics with quantitative interpolation

across socioeconomic datasets to micro- and macro-levels using regressions or other

statistical, geospatial methods, we stress the value and importance of our meso-level

observations of the regional and time specific flow patterns presented in this paper

which, moreover, have not been discussed or considered in the prior literature.

To date, no studies have looked at variance in global nighttime luminosity data

across time as a proxy for convergence and divergence phenomena or, for that mat-

ter, any theorized dynamic economic processes. Previous work has merely noted cor-

relations between nighttime lights and aggregate static accounts data (e.g., GDP).

As noted above, unlike our approach, these prior studies focused on aggregate night-

time lights panels which are, themselves, deeply flawed. One likely reason for the

relative scarcity of studies like this one is the lack of examples of big data analysis

in economics that leverage interesting higher statistical moments and patterns that

are computed and analyzed rigorously, with rare exceptions in [35–38]. We argue

that more research is needed that makes use of big (complex) data and takes seri-

ously the theoretical underpinnings of the aggregate models currently in use. This

will not only lead to improvements in current theory, but also shows promise for

validation, rejection, and, even, introduction of novel hypotheses and theory.

Passive remote sensing of the earth’s surface using satellites can allow researchers

to obtain real-time proxies for economic activity that are spatially and temporally
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Figure 11 Annual average mean-centered change, Turkey. (Top) 1993-2006 period,(Bottom)
2007-2013 period

well-defined. As opposed to the somewhat fictitious aggregate data generated by

society’s tax optimized accounting, where investments in production and sales of

products can be artificially separated in offshore holding companies with country of

origin labels attached that do not reflect the actual economic transactions, seeing

is believing. Moreover, while most survey-based data can also be misleading due to

sample biases and hidden information, here we have a global dataset with complete

coverage of nighttime photon spillage from human activity with, arguably, leading

real-time indicators of economic activity that can be useful for a more precise char-

acterization of on the ground economic development as well as early crisis warnings

when investments do not realize growth in economic output as, otherwise, expected.

We observe both support for the broad σ-convergence theory in the post-Cold war

period as well as strong divergence dynamics immediately following the financial

crisis and Great Recession with, moreover, observable patterns of growth that are

correlated in time with governmental policies introduced in the wake of economic

shocks. While it can be argued that the social insurance of government transfers

provides benefits by limiting the extent and magnitude of Schumpeterian damage

during and immediately following a crisis, we observe that there is both a direct

cost of generally lower growth in more successful areas, as well as an indirect cost

of higher accumulation of benefits in more urban areas leading to flows of labor

and capital into already densely populated regions while leaving the hinterland

relatively more impoverished. These metrics could be improved significantly with

even more up-to-date data. Particularly, with real-time (daily), high-resolution feeds

of satellite data, the improvements in precision for global activity anomaly detection
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would enable a vast portfolio of early crisis warning signaling systems. Governments,

foundations, philanthropy, and NGOs could intervene in real time as, for instance,

communities slip into decay.

We have stood for centuries, squinting skyward, learning from looking. One of

the most striking and exciting byproducts of our approach is the manner in which

our visual representations of human economic activity are immediately suggestive,

drawing the inquisitive researcher’s eye to conspicuous structures, asterisms of light.
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Table 1 Cross-country comparison of average aggregate annual growth and Markov transition
probabilities, percent

country name ŷ93−06 ŷ07−13 σ(y93−06) σ(y07−13) a
++
93−06

a
++
07−13

a
−−
93−06

a
−−
07−13

a0093−06 a0007−13
Afghanistan 6.07 6.31 20.1 12.4 10.4 11.1 7.6 6.9 82.0 82.0

Albania 13.98 12.88 29.3 25.2 8.9 12.1 7.4 10.8 83.7 77.1

Algeria 1.93 3.00 1.7 1.0 10.2 10.1 8.1 7.8 81.7 82.1

Armenia 5.43 5.58 18.5 12.8 11.3 10.6 9.8 7.1 78.9 82.3

Austria 2.60 3.37 4.8 3.3 11.9 9.8 10.3 8.8 77.8 81.4

Azerbaijan 1.43 3.37 10.3 6.1 11.8 7.7 9.7 5.3 78.5 87.0

Bangladesh 1.88 3.08 3.2 2.5 9.3 10.1 7.6 4.5 83.1 85.4

Belgium 1.80 2.91 1.8 1.2 14.3 14.6 14.2 12.7 71.5 72.7

Brazil 2.60 3.44 3.2 2.1 11.7 12.2 10.5 9.3 77.9 78.5

Bulgaria 3.55 3.89 9.3 6.5 11.9 9.5 10.2 6.5 77.9 84.1

Cambodia 6.87 11.97 13.3 31.2 9.7 9.5 5.9 2.4 84.4 88.1

China 2.07 3.11 1.0 0.8 10.4 8.3 9.3 6.2 80.4 85.5

Colombia 2.09 3.13 2.6 1.7 9.7 11.6 10.2 7.5 80.1 81.0

Costa Rica 4.17 4.79 6.1 5.1 7.7 9.2 10.2 6.7 82.1 84.1

Croatia 6.84 5.16 10.6 6.5 11.1 11.3 10.9 9.4 78.0 79.4

Cuba 4.60 4.86 8.9 6.6 9.0 10.9 8.7 7.2 82.3 82.0

Czech Republic 2.48 3.51 9.9 7.1 13.0 10.3 12.4 10.7 74.5 79.0

Ecuador 2.38 3.60 2.6 2.3 10.6 9.2 9.4 8.0 80.1 82.8

Egypt 2.09 3.17 0.9 1.0 9.3 11.9 10.7 8.2 79.9 79.9

Eritrea 4.77 4.37 6.4 5.3 10.2 11.9 10.7 6.2 79.1 81.9

Estonia 9.82 6.56 17.6 10.2 12.4 9.2 9.5 6.5 78.1 84.3

Ethiopia 6.06 5.89 9.3 7.3 10.8 13.2 9.5 6.1 79.7 80.7

Finland 4.35 4.50 10.3 6.4 12.1 10.9 10.5 10.5 77.4 78.6

France 1.76 2.87 1.0 0.7 12.4 11.1 9.2 9.6 78.5 79.3

Georgia 3.72 4.92 15.4 11.6 12.5 13.1 10.1 7.6 77.4 79.4

Germany 1.62 2.92 1.6 1.6 11.5 11.1 11.1 10.3 77.4 78.6

Greece 2.50 3.24 3.9 2.3 8.8 11.4 9.5 8.5 81.7 80.1

Guatemala 2.86 3.71 2.5 2.2 8.6 8.6 9.3 5.2 82.2 86.2

Hong Kong 1.20 2.51 3.2 3.2 12.8 13.6 13.7 13.6 73.5 72.8

Hungary 5.24 4.24 12.6 7.3 12.3 9.2 11.9 6.4 75.8 84.3

India 1.77 2.93 0.5 0.6 9.4 8.2 8.1 5.0 82.5 86.8

Indonesia 3.98 4.70 8.1 6.1 8.5 9.3 8.1 6.2 83.4 84.5

Iran 1.91 2.93 0.8 0.7 10.8 10.4 10.0 7.7 79.2 81.9

Iraq 2.17 3.83 2.9 2.9 9.7 9.9 9.0 6.5 81.3 83.6

Ireland 3.00 3.43 5.1 3.0 11.3 11.8 10.7 8.2 77.9 80.1

Israel 1.84 2.97 1.0 0.8 13.6 13.3 13.5 11.0 72.9 75.7

Italy 1.86 2.93 1.1 0.8 13.1 12.9 11.2 10.9 75.8 76.1

Japan 1.68 2.83 0.5 0.5 12.7 11.5 12.2 10.0 75.2 78.5

Jordan 2.20 3.21 2.2 1.4 10.5 11.2 9.8 8.2 79.7 80.7

Kazakhstan 2.31 3.47 5.0 3.4 13.9 10.4 8.6 7.3 77.5 82.3

Korea 2.03 3.03 1.7 1.0 10.5 11.5 9.5 10.0 80.1 78.5

Kuwait 3.18 3.94 7.8 4.6 7.8 11.0 7.9 9.9 84.3 79.1

Kyrgyzstan 3.28 4.04 9.5 5.7 12.6 9.8 8.3 8.9 79.1 81.2

Latvia 8.36 5.33 14.2 9.2 12.2 10.2 11.3 8.3 76.5 81.5

Libya 1.86 2.92 2.6 1.5 10.1 9.8 10.0 8.8 79.9 81.5

Lithuania 7.40 5.51 16.4 12.6 12.2 10.9 9.8 6.3 78.0 82.8

Luxembourg 1.80 3.12 6.4 3.5 12.5 13.3 13.5 12.7 74.1 74.1

Mexico 1.87 2.95 1.0 0.9 9.5 9.7 9.2 7.3 81.3 83.0

Mongolia 3.08 4.08 6.5 4.0 11.6 10.6 8.3 8.0 80.1 81.4

Morocco 2.07 3.06 1.2 0.8 10.4 11.2 10.6 8.8 79.1 80.0

Nepal 2.26 3.62 3.1 4.9 10.2 11.0 10.1 7.3 79.8 81.6

Netherlands 1.70 2.85 0.9 0.8 14.0 14.5 13.6 12.6 72.4 72.9

Nicaragua 3.24 4.39 4.8 4.6 10.2 9.9 10.0 6.4 79.7 83.7

Norway 4.85 4.71 11.6 6.8 11.5 12.4 9.0 10.0 79.5 77.6

Oman 3.10 3.54 3.2 1.8 10.7 8.6 9.7 6.7 79.6 84.6

Pakistan 1.48 2.74 2.2 2.4 8.9 8.1 8.1 7.8 83.0 84.1

Palestine 1.80 3.02 1.7 1.2 11.6 13.5 11.1 11.4 77.2 75.1

Poland 5.09 4.61 13.0 8.6 12.4 10.2 12.6 9.6 75.1 80.2

Portugal 2.21 3.14 1.5 1.3 10.3 10.7 8.8 9.4 80.9 79.8

Puerto Rico 1.53 2.73 1.8 1.4 14.6 14.3 15.5 11.5 70.0 74.2

Qatar 2.64 3.84 3.9 3.2 10.3 10.5 11.1 6.7 78.6 82.8

Romania 3.88 4.57 6.3 6.3 11.9 9.8 9.3 7.5 78.8 82.7

Russia 1.95 3.06 2.5 1.5 12.3 9.5 9.4 7.0 78.2 83.5

Saudi Arabia 1.91 2.97 0.6 0.5 10.1 10.4 9.7 6.9 80.3 82.8

Serbia 2.95 3.51 5.5 3.6 11.6 12.1 8.9 9.0 79.5 78.9

Singapore 1.66 2.81 0.7 0.5 NaN 11.2 NaN 11.6 NaN 77.3

Slovakia 2.28 3.38 8.3 4.4 12.8 10.4 11.3 7.8 75.9 81.7

Slovenia 4.62 4.11 8.7 5.3 10.4 10.1 9.3 9.4 80.3 80.5

Spain 1.81 2.91 0.7 0.8 11.5 11.9 10.8 10.6 77.7 77.5

Sudan 2.38 3.17 1.3 0.9 9.8 11.8 8.9 6.8 81.3 81.4

Sweden 2.80 3.44 6.8 3.8 12.7 10.9 10.6 10.0 76.7 79.1

Switzerland 2.43 3.33 7.8 4.3 13.4 12.1 11.7 11.5 74.8 76.4

Syria 1.86 2.65 3.1 4.1 7.5 9.2 8.4 6.6 84.0 84.2

Taiwan 2.24 3.16 3.2 2.0 12.8 13.9 14.6 9.7 72.6 76.4

Tajikistan 0.41 2.88 5.5 5.0 13.1 8.5 10.1 9.2 76.8 82.3

Thailand 2.47 3.85 2.3 3.9 9.7 10.3 8.4 6.5 82.0 83.2

Tunisia 2.63 3.32 3.4 2.0 7.8 8.7 10.7 6.7 81.5 84.6

Turkey 2.93 3.81 4.2 3.4 10.2 12.9 8.9 7.4 80.9 79.7

Turkmenistan 2.15 3.17 3.7 2.4 10.7 9.4 6.6 6.2 82.7 84.4

Ukraine 0.57 2.94 7.9 5.2 13.8 9.3 10.2 5.1 76.0 85.6

United Arab Emirates 2.13 3.11 1.1 0.8 9.0 10.9 9.1 8.4 81.9 80.7

United Kingdom 1.46 2.79 1.6 1.1 11.5 11.7 11.5 11.2 77.0 77.1

United States 1.73 2.86 0.6 0.6 9.8 11.6 9.8 9.4 80.4 79.0

Uzbekistan 1.19 2.72 2.7 1.6 11.7 7.9 8.9 7.6 79.4 84.5

Venezuela 1.97 3.29 1.7 2.0 10.3 10.4 10.3 8.0 79.4 81.7

Vietnam 4.43 4.14 4.8 2.8 8.3 9.6 8.7 7.0 83.1 83.4

Western Sahara 3.00 3.50 2.2 1.6 11.1 10.6 10.8 8.3 78.2 81.1

World 1.66 2.78 n.a. n.a. 9.9 9.9 8.3 7.9 81.8 82.2

Yemen 2.88 3.48 2.5 2.2 7.6 10.5 7.2 6.7 85.2 82.8
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Table 2 Cross-state comparison of average aggegate annual growth and Markov transition
probabilities, percent

country name ŷ93−06 ŷ07−13 σ(y93−06) σ(y07−13) a
++
93−06

a
++
07−13

a
−−
93−06

a
−−
07−13

a0093−06 a0007−13
Alabama 1.71 2.86 1.3 0.9 10.9 10.3 10.6 8.9 78.5 80.7

Arizona 1.75 2.87 0.7 0.6 10.6 14.0 10.9 10.7 78.5 75.3

Arkansas 1.96 2.97 2.0 1.3 10.4 11.0 10.2 7.4 79.3 81.5

California 1.55 2.76 0.9 0.7 12.1 12.3 11.7 9.5 76.2 78.1

Colorado 1.56 2.74 3.1 3.5 13.5 12.6 10.9 10.4 75.6 77.0

Connecticut 1.75 3.11 2.2 3.5 15.0 13.8 13.6 13.5 71.4 72.6

Delaware 1.52 2.91 4.7 2.5 11.2 12.5 10.5 14.3 78.3 73.2

Florida 1.68 2.81 0.3 0.3 11.8 11.5 10.4 10.4 77.8 78.1

Georgia. 1.86 2.91 1.4 0.9 10.5 9.7 10.9 8.6 78.6 81.7

Idaho 2.32 3.17 8.4 7.0 11.7 10.2 10.4 7.6 77.9 82.2

Illinois 2.08 3.12 2.5 2.3 11.0 10.8 10.7 9.3 78.3 79.9

Indiana 2.29 3.26 4.7 3.2 10.6 10.8 10.1 10.5 79.3 78.6

Iowa 2.84 3.92 4.2 4.9 12.5 10.1 9.2 9.4 78.2 80.5

Kansas 1.69 2.96 3.4 2.8 14.5 11.7 10.2 8.0 75.2 80.4

Kentucky 1.51 2.90 4.7 2.4 11.6 9.5 11.0 7.6 77.3 82.9

Louisiana 1.68 2.84 0.8 0.6 9.8 8.7 9.8 7.0 80.5 84.3

Maine 3.56 4.88 7.2 9.4 10.2 10.6 9.5 7.6 80.3 81.8

Maryland 1.32 2.79 3.9 2.2 10.7 11.6 11.3 12.3 78.0 76.2

Massachusetts 1.79 3.08 1.0 2.2 14.0 13.2 14.4 14.6 71.6 72.2

Michigan 2.31 3.77 2.4 4.5 11.2 10.8 10.8 8.5 78.0 80.7

Minnesota 2.32 3.73 2.5 4.4 11.7 9.1 9.7 7.4 78.6 83.5

Mississippi 1.85 2.92 1.3 1.0 11.0 8.0 10.1 7.6 78.9 84.3

Missouri 1.97 3.01 2.9 1.8 11.6 9.9 10.0 7.3 78.4 82.8

Montana 4.58 4.87 15.6 12.1 13.7 9.8 9.4 5.8 76.9 84.4

Nebraska 2.34 3.50 4.4 5.3 12.2 14.8 11.2 10.9 76.7 74.3

Nevada 1.73 2.86 2.2 1.7 12.7 11.7 10.9 9.2 76.5 79.1

New Hampshire 1.98 3.50 1.7 4.6 12.1 11.9 11.7 11.4 76.2 76.8

New Jersey 1.62 2.87 2.5 1.8 13.4 12.0 13.1 12.4 73.5 75.6

New Mexico 1.61 2.84 1.2 1.0 12.7 11.1 10.7 8.7 76.6 80.2

New York 2.11 3.48 2.3 4.0 10.9 11.2 10.5 8.4 78.6 80.3

North Carolina 1.54 2.83 2.4 1.3 9.9 11.6 11.4 8.2 78.8 80.2

North Dakota 4.33 5.60 10.2 8.3 15.5 8.7 9.5 5.3 75.1 86.0

Ohio 2.02 3.13 4.0 2.9 11.3 10.3 10.5 9.1 78.1 80.7

Oklahoma 1.64 2.85 1.7 1.2 11.3 12.8 10.0 8.1 78.7 79.0

Oregon 1.70 2.76 3.4 3.0 12.3 11.8 10.1 11.3 77.6 76.9

Pennsylvania 2.13 3.27 3.4 3.3 11.8 9.8 11.3 9.3 76.9 80.8

Rhode Island 1.51 2.88 2.2 2.5 13.9 12.2 12.5 14.0 73.6 73.8

South Carolina 1.73 2.85 1.0 0.7 10.6 10.4 11.2 8.5 78.2 81.1

South Dakota 3.18 4.00 5.8 5.2 13.4 12.3 12.3 9.0 74.2 78.7

Tennessee 1.47 2.81 2.9 1.7 11.0 10.1 10.8 7.4 78.1 82.5

Texas 1.67 2.87 0.9 0.7 12.4 10.6 10.2 7.5 77.4 81.9

Utah 1.57 2.84 5.1 4.0 11.0 10.3 10.5 9.1 78.5 80.6

Vermont 2.35 3.82 3.7 7.1 10.2 8.2 9.1 6.6 80.7 85.2

Virginia 1.56 2.87 3.8 2.0 10.6 8.2 11.0 7.4 78.4 84.5

Washington 1.85 2.76 6.8 5.4 13.6 10.4 10.9 8.2 75.5 81.4

West Virginia 1.75 2.93 4.1 2.3 11.2 10.1 10.6 7.3 78.2 82.7

Wisconsin 2.20 3.96 2.0 4.9 10.5 10.3 10.0 8.2 79.5 81.5

Wyoming 1.63 3.10 6.1 7.4 13.4 13.0 9.4 10.1 77.2 76.9


